Performance assessment of buildings isolated with S-FBI system under near-fault earthquakes
نویسندگان
چکیده
This study investigates the optimum design parameters of a superelastic friction base isolator (S-FBI) system through a multi-objective genetic algorithm to improve the performance of isolated buildings against near-fault earthquakes. The S-FBI system consists of a flat steel-PTFE sliding bearing and superelastic NiTi shape memory alloy (SMA) cables. Sliding bearing limits the transfer of shear across the isolation interface and provides damping from sliding friction. SMA cables provide restoring force capability to the isolation system together with additional damping characteristics. A three-story building is modeled with S-FBI isolation system. Multiple-objective numerical optimization that simultaneously minimizes isolation-level displacements and superstructure response is carried out with a genetic algorithm in order to optimize S-FBI system. Nonlinear time history analyses of the building with optimal S-FBI system are performed. A set of 20 near-fault ground motion records are used in numerical simulations. Results show that S-FBI system successfully control response of the buildings against near-fault earthquakes without sacrificing in isolation efficacy and producing large isolation-level deformations.
منابع مشابه
A Comparative Study on the Seismic Performance of Superelastic-Friction Base Isolators against Near-Field Earthquakes
This paper presents a comparative seismic performance assessment of superelastic-friction base isolator (S-FBI) systems in improving the response of bridges under near-field earthquakes. The S-FBI system consists of a steel-Teflon sliding bearing and a superelastic shape memory alloy (SMA) device. The other isolation systems considered here are lead rubber bearing (LRB), friction pendulum syste...
متن کاملEvaluation of Nonlinear Response of Structures to Near-Fault Ground Motions and the Comparison of Results with Near-Fault Simulated Records
Near-fault ground motions have caused very much damage in the vicinity of seismic sources during recent earthquakes. It is well known that under specific circumstances, intensive ground shakings near fault ruptures may be characterized by short-duration impulsive motions. This pulse-type motion is generally particular to the forward direction, where the fault rupture propagates towards the site...
متن کاملSeismic control of smart base isolated buildings with new semiactive variable damper
A new semiactive independently variable damper, SAIVD, is developed and shown to be effective in achieving response reductions in smart base isolated buildings in near fault earthquakes. The semiactive device consists of four linear visco-elastic elements, commonly known as Kelvin–Voigt elements, arranged in a rhombus configuration. The magnitude of force in the semiactive device can be adjuste...
متن کاملPerformance of Mid-rise Buildings with Tubular Structure Under the Effect of Near Field Earthquakes
The aim objective of this study is to investigate the effects of near-field earthquakes on the response of mid-rise buildings with tubular structure. For this purpose, a 20-story building with a square plan of six by six bays, all with 6 m span, and story height of 3.70 m is considered. Axial force of columns, shear lag, and inter-story drift values are used as the main response parameters. N...
متن کاملInvestigate probability of damage of Earth dam under Near-field and Far –field earthquake : Case study Gotvand earth dam
The main goal of preset research is investigate the effects of vertical component of Near-Fault and Far-Field earthquake records on the probability of overtopping induced damage of earth dam due to the reduction of freeboard due to the settlement of dam crest. In this respect 12 different earthquake record are selected. Nonlinear dynamic analysis of earth dam is implemented with FLAC 3D using F...
متن کامل